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Abstract. Trust region algorithms are an important class of methods that can be used to
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actly, provided the approximations are consistent. We show that the assumption of consistency
can be replaced by a simple condition on the relative error in the gradient approximation. This
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to be computed for unsuccessful iterations. Second, it leads to stronger convergence results than

obtained in [10].
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Global Convergence with Inexact Gradients 1
1. Introduction

1.1. Trust region algorithms using inexact gradients. This paper considers trust region

methods for the solution of the unconstrained optimization problem

minimize f (z), (1.1)
z
with f:R"” — R'. These methods generate iterates {z,} by producing and approximately solving

a sequence of constrained quadratic model problems. That is, 2,4, =2; + & for a step s that

approximately solves

minimize Y (z, +38): ||Dys || < A, (1.2)
mﬂ

s

where D, € R™™" is a scaling matrix, A, is a positive variable known as the trust radius, and ¢, is
a quadratic model of f about the point z:

Yilzi +6) = f(n)+ g T8 +%s"Bs . (1.3)
The vector g €IR" is thus the gradient of ¥, at 1, and the symmetric matrix B, € R**" is the
Hessian of ¢, . Ideally, g, should be identical to Vf (z;) (the gradient of f at z,) while B, should
be identical to V2f(z;) (the Hessian of f at z), but it may not be practical to compute these

quantities exactly.

Strong global convergence results have been shown for trust region algorithms which take
9 =V [ (2,) (see, for example (1], (3], 7], [13], and [14]). If the sequence of Hessian approxima-
tions {B,} is uniformly bounded, mild conditions of f and {D,} are sufficient to establish that
Jim ||V (z) [l =0 (1.4)
for most implementations.

Moré€ [10] considers the global convergence of a class of trust region algorithms in which the
condition g, = Vf (z;) is relaxed. Instead of requiring exact gradient values, Mor¢ allows g; to be

an approximation to Vf(z,) provided the sequence of approximations satisfies the consistency pro-

perty

zk—»z' = lim ||g,, —Vf(l'k)” =0. (1‘5)
k00
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Global Convergence with Inexact Gradients 2

Using (1.5) as a primary assumption, he is able to establish!
liminf |lg || =0 (1.6)
but provides no suggestions about how (1.5) should be enforced.

In this paper, we show that the consistency assumption (1.5) can be replaced by a condition

on the relative error in the gradient approximation. In simplest form,? this condition is

e - V1 (ze)
el =¢ VF (1.7)

for some constant® ¢ < 1. Since error estimates are often available when approximate gradients
are calculated, (1.7) provides a practical test for judging the adequacy of a given gradient approxi-
mation. We argue that this is a more natural approach than trying to enforce (1.5) directly.

Furthermore, (1.7) leads to the global convergence result
Jim |lg || =0, (1.8)
which is much stronger than (1.6) under certain conditions.* Moreover, (1.7) and (1.8) imply
Jim [lge -V (2}l =0, (1.9)

which is an even stronger consistency property than (1.5). Consistency of the gradient approxima-

tions is therefore a consequence of our theory rather than an assumption.

1.2. Structure of trust region algorithms. Before presenting justification for our claim that
(1.7) is a more practical condition to directly enforce than (1.5), the structure of trust region algo-

rithms must be described in more detail. Authors typically describe trust region algorithms by

1 More specifically, he establishes litminf Ha i 1=0, where the elliptical norm ||z {|, is defined to be
-,

0, Tpy)”
{1z ||, =(2T Az)* for symmetric positive definite A € R*>*. For implementations which require ||D; 7D, || <, and

H(D,TD,) 1[I £ 0,2 for comstants oy, 0,, Morés result is thus equivalent to likl’ll‘iol‘l)f llg; =0

2This form is valid for D, = I; slightly different forms of this condition will be used for the more general case D, 1.

2 The value of ¢ will depend upon some of the other parameters in the trust region implementation, but will typical-
ly be about 0.9.

*Notice that (1.7) and (1.8) imply klim IIVf(z;) || =0, the same strong giobal convergence result obtained when
—00
9: = VS (z;). If {z;} converges, then (1.5) and (1.6) also imply this strong result, but if {z;} is unbounded or has more

than one limit point, then (1.5) and (1.8) do not even imply likriio%f Hos(z)ll=0.
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Global Convergence with Inexact Gradients 3

using either a stngle loop indexing system (see, for example, [10] and [13]) or a nested loop indexing
system (see, for example (1], [14], and [15].) For methods that take g, = V[ (z;), the differences
between these two indexing systems are purely semantic, but for g, # Vf(z,) it is instructive to

consider them separately. The single loop structure used in [10] is as follows.

Algorithm (1), Single loop structure for the trust region method.

Let 0 <19, <17y <1 and 0 <~; <1< 7, be prespecified.® Select an initial guess z,€ R* and trust

radius Ag > 0. Compute f (z), and compute or initialize gy, By, and Dy,

For k =0,1, ..., until “convergence” do:
(a) Determine an approximate solution s, to problem (1.2).
(b) Compute pp = (f (22) — f (21 + &)/ (¥ (7x) — i (z + &)).
(c) If pp <1, then set &, =0 and A,,; €(0,7; ).
(d) If gy <pe < ng then set Agyy €[ Ay, &)
() If ny<p, then set Ayyy €Ay, 7, &)
(f) Set z,,, =12 + & and update g;, Bi, and D;.

End loop.

In this structure, trial steps s, are rejected and the trust radius is reduced if p; < n,. Such
an iteration is called unsuccessful since z;,, = z;; iterations for which p; > n; are called successful.
Clearly, step (c) is designed to prevent an infinite series of unsuccessful iterations, while steps (d)
and (e) are designed to pick a trust radius for the next iteration that is small enough to have a

good chance of producing a successful step yet large enough to permit rapid convergence.

The structure of Algorithm (1) neither requires nor prohibits updates of g;, Bi, and D; at

unsuccessful iterations. In implementations which take g, = V f(z;), such updates are rarely found

5Typical values for these parameters ar 7, =0.001, nom= 0.1, v, =0.25, 7,=4.0.
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Global Convergence with Inexact Gradients 4

in the literature.® The following algorithm uses a nested loop structure in which the outer loop
indexes only successful iterations and updates to g,, B;, and D, are not allowed during the inner

loop.

Algarithm (2} Nested loop structure for the trust region method.

Let 0 <15, <1, <1 and 0 <7, <1< 7, be prespecified. Select an initial guess z, €ER*® and trust

radius Ay > 0. Compute f (z,), and compute or initialize go, By, and Dy,
For k =0,1, - - - until “convergence” do:
(a) Repeat until p; > n;:
(a.1) Determine an approximate solution to & to problem (1.2)
(a.2) Compute py = (f (z4) = f (zx + &)/ (Ya(2:) = (Vi (2 + &)
(a.3) If pp < n,, then set A, €(0,7,4,].

End loop.

(b) If pp < my then set Ayyy €(0, Ag], else set Ay 4y € [Ag, 1284 ).

(¢) Set z4,; =z, + 8 and update g,, B;, and D, .

End loop.

The form of Algorithm (2) raises the possibility that at some iteration k, the inner loop (a)
may fail to generate an acceptable new iterate. Consider, for example,” an initial gradient approxi-
mation go=— Vf(zo) with By=Dy=1. Since every descent direction for f is an ascent direction

for g, po will be negative® no matter how much A, is reduced in the inner loop (a). Such failures

®This is not to say they are unimportant. The well known algorithm NL2SOL [6] for the solution of the nonlinear
least squares problem owes much of its success to its capability of switching between alternate Hessian approximations.
Global convergence theory for such switching is given in [1] and [4] in sufficient generality to provide a framework for an
expert systems approach to optimization. However, |1], {4], and [6] all take g, =V [ (2;), which makes the question of up-
dating g, at unsuccessful iterations moot.

"This example is presented in greater detail in Section 3 of this paper.

8Although this example depends on the angle between g; and V/(z;) being greater than ninety degrees, another ex-
ample will be presented in Section 3 that demonstrates the possibility of failure in the inner loop even if the angle between
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Global Convergence with Inexact Gradients 6

of the inner loop to converge can occur at any iteration unless:

(i) additional conditions are imposed on g, or

(i1) gx is successively improved in the inner loop so that k]im Hoe = V1 (z) ] =0.
—00

The latter approach is implicit in the formal statement of Mor€’s algorithm, but we prefer impos-

ing the additional condition

”gk - Vf (zk) “(DkTDk)-l

<s. 1.10
oe g, 75, (1.10)

We show in this paper that if ¢€[0,1—1,), then (1.10) is sufficient to ensure the success of the
inner loop. If error estimates are available, (1.10) can be checked at the start of every iteration k
and g, can be recomputed if necessary. Trying to use approach (ii) so that the analysis of [10]
holds is less practical because it involves recomputing g, with successively greater accuracy as 8,
decreases in the inner loop without regard for whether error in g; is the problem or whether A, is
really too large. Since unsuccessful steps are quite common even with g, =V f(z;) and since
recomputing g, with successively greater accuracy is generally very expensive computationally, this

approach is much less satisfying than using (1.10).

Even if all the iterates are acceptable, directly enforcing the consistency condition (1.5)
presents a practical difficulty in that no specification is made about how fast to force

{llgx =V (2) ||} to converge to zero. One might enforce the condition

Noe = Vi (z) 1l < e lla |l (1.11)

for some constant ¢ € (0, 00), but (1.5) provides no suggestions for selecting a reasonable value for
¢. On the other hand, a reasonable value for ¢ in (1.10) is much easier to select since we show that

strong global convergence results can be obtained for any ¢ € [0, 1 —n,).

1.3. Synopsis. In Section 2 of this paper, we briefly discuss the techniques generally used to
compute trial steps for a given model, scaling matrix, and trust radius. In Section 3, we present

two detailed examples of how the inner loop of Algorithm (2) can indeed fail to produce a solution.

g; and V{ (z;) is zero.

TR87-6 June 1987



Global Convergence with Inexact Gradients 6

We then show that condition (1.10) with ¢ < 1 — 1, is sufficient to ensure the success of the inner
loop. In Section 4, we show that (1.10) with ¢<1-—1n, is sufficient to establish

lim inf e 1] = lim inf |19/ (z) || = 0 provided {B,}, {D:TD:} and {(D;7 D;)™!} are uniformly
—00 — 00

bounded. @ We then demonstrate two ways that the stronger convergence result

klim [1V7(2:) || =0 can be obtained using (1.10) with ¢ < 1 —1, given that {B,} is uniformly
—00

bounded and {D,} satisfies some mild assumption. The final section of this paper summarizes our

results and suggests some possibilities for future study.

1.4. Nomenclature and standard assumptions. In addition to the notation already intro-
duced, the following definitions and conventions are used throughout this paper. Unless otherwise
specified, || - || denotes the Euclidean norm (or the matrix norm induced by the Euclidean norm),
while ||z ||4 is the elliptical norm (z7 Az)* for A a symmetric positive definite matrix in R**".
A function hA: R —+ R"™ is said to be Lipschitz with constant L in an open convex region {2 if
Ha(z)—h(y)ll <L]|lz~yll 2,y €Q. The level set of a function f at a point z, € R" is

the set of all z € R" such that f(2)< f(z).

Let €1 be an open convex set containing the level set of f at zy. The function f: R" — R

is said to satisfy the standard assumptions if

J 18 continuously differentiable on Q0 (1.12a)
J 18 bounded below, and (1.12b)
V[ 18 Lipschitz with constant L in (1. (1.12¢)

It is frequently convenient to represent the trust region subproblem in local coordinates. We

define the predicted function reduction pred;(s) as

predi(s) = Yp (2 ) — Yu(ze + )

(1.13)
=—gTs—%s"B;s,
and the actual function reduction ared,(s) is defined
aredy(s8) = f(z)— f{z +¢) . (1.14)

TR87-8 June 1987



Global Convergence with Inexact Gradients 7

Although the notation used in Algorithm (2) is usually convenient, a rigorous treatment of
the success or failure of the inner loop requires indexing the trial steps and trial trust radii within
the loop. The following algorithm is completely equivalent to Algorithm 2, but introduces some
additional nomenclature. Specifically, {a‘} represents the complete sequence of trial steps gen-

erated and {A')} represents the corresponding trial trust radii, so that {s,} C{s'} and {A,}C {A'}.

Algorithm (3). Trust region method with full notation.

Let 0 <19 <17, < 1 and 0 < v, <1 < 7, be prespecified. Select an initial guess zo€ R* and trust

radius A > 0. Compute f (z;), and compute or initialize go, By, and Dy. Set ¢ = —1.

For k =0, 1, ..., until “convergence” do:
(a) Repeat until p' >n,:

(a.1)  Increment 1 and determine an approximate solution s* to

minimize ¥, (2, +8): ||Des || < AF . (1.15)
sE€ER"

(a-2) Compute

p' = ared,(s')/pred,(s*) (1.16)
(a.83) If p* < n, then set A (0,7, A7),

Else set s, = &', A, =A', and p, = p'.

End loop.

(b) If p* < 5, then set A+ (0, A'],

Else set At g [AY, v, AF).
(¢) Set z,,, =z, + & and update g;, B;, and D,.

End loop.

TRS87-6 June 1987



Global Convergence with Inexact Gradients 8
2. Computation of trial steps.

2.1. Introduction. In order to establish our results, we must use several properties satisfied by
standard techniques for computing trial steps. This section summarizes these properties, but is not
intended to be a comprehensive discussion of methods of step computation. An excellent survey
(with an extensive bibliography) of the many step computation strategies is presented in [10].

Readers familiar with these techniques may wish to proceed directly to Section 3.
2.2. Scaling matrices and preconditioning. For any nonsingular D, € R*** consider the
change of variables

i = DkZ (21)

so that § = D, s and 7, = D, z,. Then the definitions

Ve(ze +8) = Yu(z+ 8), (2.2)
pred,(5) = predi(s), (2.3)

and
ared,(8) = ared; (s) (2.4)

lead to

pred,(3) = — 3, Ts —%sTB, s, (2.5)
argdk(i) = I(Ik)— f(.’tk +Dk_l§) , (26)
g =D 7g, (2.7)

and
By =D, "B, D, (2.8)

In this notation, (1.15) becomes the simpler problem of finding &* that approximately solves
minimize O, (2, +8): |5 ]] < AY . (2.9)
icR* )

The step s* can then be recovered by inverting transformation (2.1) to give

o =D, . (2.10)

TR87-6 June 1987



Global Convergence with Inexact Gradients 9

Typically, methods for calculating &' use (2.9) and (2.10) rather than (1.15), although the
change of variables (2.1) need not be explicitly performed. Consider the relationship between the

method of steepest descent, which takes

' =—ayg, (2.11)
for some positive a, and the preconditioned steepest descent method, which uses a positive definite

preconditioning matriz C, € R*** and sets

8 =—aC g (2.12)
for some positive a. Although this preconditioning does not explicitly use scaling (2.1), applying

the method of steepest descent to the scaled problem (2.9) yields

8 = — Qik (213)
or
8'. = - O’(Dk TDk )—lgk (214)
so that (2.12) implicitly uses a change of variables for which D, T D, = C,.
The matrices D, are often assumed to be diagonal in trust region literature. Because of the
relationship between scaling and preconditioning, we prefer not to make this assumption, as nondi-

agonal preconditioners are widely used in conjugate direction methods for large scale problems.

2.3. Asymptotic behavior of step directions. The first property that we will need concerns

the direction that trial steps s' tend toward as the trial trust radii tend toward zero. This pro-
perty is, obviously, directly dependent on the method used to compute the trial steps. Let ©° be

defined to be the angle between 5° and —g; so that

cos O = —(8")T g /(113" 1 1§ 11) - (2.15)

We will show that for the two major classes of solution techniques, if A’ — 0 in the inner loop of
Algorithm (3) and g, # 0, then cos ©' — 1. Furthermore, let 8, be the angle between 5, and —g,.

If an infinite sequence of successful iterates are generated and li:n sup ||ék || < oo, then Ay —0
—00

and likm inf |}g4 || > 0 imply that cos©, — 1.

TR87-8 June 1987



Global Convergence with Inexact Gradients 10

One of the major classes of solution methods is based on the following powerful result.’

THEOREM 2.1. Let g be a vector in R", let B € R*** be symmetric, and let D € R*** be

nonsingular. A vector s €R" is a global solution to

minimize gTe +%sTBs: ||Ds || < A (2.16)

if and only if s and A obey the following relations for some g > 0.

(B+uDTD)s =g, (2.17)
[1Ds || < &, (2.18)
p(a=|IDs]l) =0, (2.18)
and
B + 1 DT D is positive semidefinite. (2.20)

Furthermore, if B 4+ DT D is positive definite, then (2.16) has a unique global solution.

Theorem 2.1 is unusually strong in that it completely characterizes all of the global solutions
of problem (2.16), and simultaneously suggests an approach to approximately solving the trust
region subproblem for a prespecified A’. Consider any u >0 which is sufficiently large to make
B +uDTD positive semidefinite, and let s(u) be a solution to (2.17). Furthermore, define
A(p)= ||Ds(u) || so that (2.18) and (2.19) are satisfied. We see that s(u) exactly solves (2.16)

for!®

A = A(¢) and hence one possible approach to solving the trust region subproblem is to use some
sort of procedure to find a u* for which A(p')=A'. I, for example, a u' is found for which

A(p')=(1+¢€) A" for some small ¢, then s(p') is an ezact solution to the problem

minimize gTs +%esT Bs: ||Ds || < (1+¢€)A° . (2.21)

Methods of this type are sometimes called optimal locally constrained [8], or OLC methods.

Such methods approximately solve the trust region subproblem (1.15) by eractly solving the nearby

®This well known result is founded on work done by Goldfeld, Quandt, and Trotter |9], and was first stated in
modern form by Gay (8] and Sorensen [15]. The reader is referred to [10] for a more complete history and discussion.

I fact, if 4 =0 and B is symmetric positive definite, #(p) exactly solves (2.16) for every A> A(p). That is, p=0
corresponds to the constraint not being binding.

TRS87-6 June 1987



Global Convergence with Inexact Gradients 11

problem (expressed here in scaled form):

minimize §,5+%3TB,s: ||5]] < B° (2.22)
with
A < A' < e’ (2.23)
for some constants'! ¢, €(0,1] and ¢, € [1,2). Trial steps therefore satisfy
6" [} < eptr” . (2.24)
A large number of efficient techniques can be found in the literature for finding a satisfactory u'.
Experimental results have been published for several implementations {10] in which the average

number of matrix factorizations (of B + g DT D) required to find an acceptable y' is roughly 1.5.

We have now characterized OLC methods sufficiently to examine the directional behavior of

s’ as A' —0.

THEOREM 2.2. For k=1,2, ..., kp,, <00, let {g;} be a set of vectors in R* and let {é,,} be
a set of symmetric matrices in R™™. Let {A‘} be a sequence of positive numbers with
{8} C{A'}, let 5° € R" be calculated by an OLC method, and define ©' to be the angle between

the vectors 5° and — §,. We then have the following.
(i) For fixed k, either g, =0 or

lim A'=0 = lim cos (9") =1, (2.25)
§ =00 1—00

(i) Suppose {A,} is an infinite sequence and let {4,} be the subsequence of {s'} associated with

{A;}. Define 8, to be the angle between 8, and —g,. If li{n sup ||B; || < oo, then either

liminf ||gs || =0 or
k—00

lim A’ =0 = lim cos(®')=1 => lim cos©®,=1. (2.26)

§ =00 k,f—o00 k—00

The proof of this theorem is given in the appendix of this paper since it is rather unenlight-

ening. It should be pointed out that (i) above is well known but is seldom stated in the literature,

VA typical choice is ¢; = 0.9 and com=1.1.
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Global Convergence with Inexact Gradients 12

since standard convergence theory with g, = V[ (z,) can be established without invoking (2.25).!2

The major alternative to OLC methods for computing approximate solutions to (2.9) is a

class of techniques that we will refer to as generalized dogleg methods. The oldest and simplest

such method is Powell’s dogleg algorithm [11]. This method'® defines a piecewise linear path 3(a)

starting at & =0, extending to the Cauchy step

(2.27)

Figure 1. Trial steps computed by the dogleg method for two different values of A.

1251though it is possible to prove many of our results without using Theorem 2.2, such analysis requires ¢ << 1—1n,
in some cases.

18powell originally only considered D, =1I. The more general form given here is sometimes called the preconditioned
dogleg.
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and then proceeding to the quasi-Newton step
&H" =-B",, (2.28)
(assuming for the moment that By is positive definite.)

If 4, is inside the trust region, then &' is taken to be 4, ™. Otherwise the dogleg method
sets &' as the intersection of &(a) with the surface of the trust region. In either event, &' minim-
izes P, (Z¢ + 8(a)): ||8(a) || < A°. This method has the advantage of requiring only one matrix
factorization per major iteration: Once &, ™ has been calculated, computation of &' for any given
A' is trivial. Figure 1 illustrates trial steps computed by the dogleg method for different values of

A. Tt is clear that, for sufficiently small AY, the trial step &' is a positive multiple of —g,, the

direction of steepest descent for the model.

Other methods exist in the literature which compute approximate solutions to the trust
region subproblems by minimizing ¥ over a piecewise linear path. The double dogleg of Dennis and
Mei {5] uses a path with one extra “leg” in order to give a larger bias toward the quasi-Newton
direction — B,™'§,. Steihaug [17] uses a dogleg path defined by the steps generated by a conju-
gate gradient method (with preconditioner Dy T D) applied to the problem Bys = —g;. Other
dogleg methods exist (see, for example, [14]) that take advantage of negative curvature in ¢ (i.e.,
B, need not be positive definite.) All of these methods use &, as the initial segment of the
dogleg and define 8(a) such that ||s(e)|| is increasing so that the intersection of 4(c) and the

surface of a trust region will be unique. We can therefore state the following.

PROPOSITION 2.3. The conclusions of Theorem 2.2 remain valid if each 5° is computed by

a generalized dogleg method rather than an OLC method.

Proof. This proposition follows immediately from (2.27), the uniqueness of

é(a)n{as: ||s || =A‘}, and the hypotheses of Theorem 2.2. O
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2.4. The uniform predicted decrease condition. A technical condition concerning trial steps

computed by OLC or generalized dogleg methods that is of great use in proving global convergence

is the untform predicted decrease™ (UPD) condition:

vty 1 [, 221 o
1
for some constants ¢3€(0, 1] and o, €(0,00). A complete discussion of this condition is not neces-

sary for the purposes of this paper, and we merely give the well known'® result that OLC and gen-

eralized dogleg methods satisfy (2.29) provided'®
B |l <oy W k. (2.30)

3. Successful termination of the inner loop.

3.1. Introduction. Using the properties of trial steps described in the last section, it is easy to
generate examples for which the inner loop of Algorithm (3) will fail to find an acceptable step in a

finite number of iterations.
Example 3.1 : g, not a descent direction. Define f(z)=%z7z and select any nonzero
zo. We have ared(s) = % 2,7 20— % (204 8)T(20+8) = — VS (20)T8 —%sTs. Now suppose

that go=—Vf (2o), Bo=1I, and Do=1I. We have that pred,(s)=V/f (z5)7s —%+7 s and

_ ared(s*) _ — YV (z0)T 8" — % (s%)T(s")
predy(s') vf (10)T5“*(")T(5i)

(3.1)

For simplicity, suppose that each s' is being computed by a dogleg procedure so that

8' =—A%go/ |lg0|] for any A* < ||go|l. Substituting into (3.1) gives

I The term “uniform” is used because of the uniform bound ”ék ”Sol \f & as opposed to, say, bounds of the
form ||B; | <o,(1+ k) k.

18See for example, [2], (8], [10], [11], and [14].

8n [2] it is argued that the weaker assumption of a uniform upper bound on {hﬁ;i,/ﬁtri‘} is to be preferred,
since: (2) this also implies the UPD condition, (b} natural methods exist for enforcing this weaker condition, and (¢) numer-
ical testing of these safeguarding techniques has shown that they can dramatically improve the reliability of a standard
method without decreasing the overall efficiency of the overall algorithm. The best one of these methods is probably of
limited utility for models with g, % Vf (z;) because it makes use of first order differences in “g(z)"” to safeguard the model
Hessian, but an alternate safeguarding technique using second order differences in f is also shown in [2] to improve relia-
bility.

TR87-6 June 1987



Global Convergence with Inexact Gradients 15

o = loall =%
Mool - %20

(3.2)

Hence, if A°< ||goll, #* <0 for any A* < A® and the inner loop of Algorithm (3) will never ter-
minate. Similar examples can be shown for any gradient approximation and scaling matrix which

do not satisfy (Dy Tg: )T (D TV S (7)) > 0.

Example 8.2 : || g, || >> ||V (x,) |l. Even if ~(D,TD;)'g: is always a descent

direction, the inner loop of Algorithm (3) is not assured of success. Consider the last example with

go taken to be -:—Vf (zo). Again taking &' = — A'gy/ ||go]], we have
1

i - VI (z0)Ts" — %(s*)T(s*)
s TP LIS )

Then for any A' <A< min{ {|go ], ||VS (zo) ||} We have

1195 (o) || - % A 3
VS (zo) | = 1/4m AF n, (3.4)

pi=14% m
so that the inner loop of Algorithm (3) will never find a successful iterate.

These examples, although rather extreme, clearly demonstrate that additional conditions
must be imposed on the gradient approximation to assure the finite termination of the inner loop
at every major iteration. It should be pointed out that this in no way contradicts Mor€’s result

that consistency of the gradient approximations implies libm inf |} g ”(D,T Dk)_l=0 for Algorithm
—00
(1). Since his notation includes both inner and outer loops, hypothesis (1.5) becomes

(5= 2) or (5 =0 for fized k) = lim |lg =9/ (a)]] =0 (3:5)

§ —+ 0O
in our notation, where {g*} is the set of approximations to Vf(z;) used in the inner loop. How-
ever, we prefer algorithms which keep a fixed approximation during the inner loop, and More€’s

hypothesis cannot be applied directly to Algorithms (2) or (3).

3.2. Ensuring successful termination of the inner loop. In this section we show that if the
relative error in the gradient approximation is less than 1 —n,, at a given iteration, then the inner
loop of Algorithm (3) is assured of finding a successful new iterate. The following lemma will

prove useful.
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LEMMA 3.1. Let f:R"” — R be continuously differentiable on an open convex set {1 contain-
ing a point z;, and let Vf be Lipschitz continuous on I with constant L €(0,00). Let the func-
tions aredy(s) and predy(s) be defined as in (1.13) and (1.14). Let A" € (—o0, o0) be the smallest
eigenvalue of By and let A\™ € [X,’“i“, oo) be the largest. If the error in g is defined to be

& =g—-Vi(n), (38)
then for all s ER"® such that z, + & €1, we have

=% [ls 1%L + M) — es < predi(s) — aredi(s) < % [|s |IH(L =2 —efs . (3.7)

Proof. We first use an integral representation of ared,(s) to establish

1
predy(s) — ared(s) = — g, Ta — % sTBys + fo(z,, +xe)Ts dX
0

1 (3.8)
=—c,,Ta—%aTB,,a+f(Vf(zk +28)=VS(z))Tsd).
0
Now, A\P™ ||s ||2< 8T Bys <A™ |}s ||? and
1 1
I_f(Vf(zk+>\s)——Vf(zk))Ts AN [ VS (@ +28) =V (z) 1] |]s [[dX
0 )
. (3.9)
SJLANs I Hle fldx =%L |ls |I*.
0

Substituting these bounds into {3.8) immediately establishes (3.7).

We can now establish the main result of this section. It ensures that a successful step can

always be found provided the relative error in g; is less than 1 — 5.

THEOREM 3.2. Let f:R® — R be continuously differentiable on an open convex set {1 con-
taining a point z,, and let Vf be Lipschitz continuous on Q with constant L €(0,00). Let
ared,(s), pred,(s), e, and A\PI® be defined as in Lemma 3.1, and let D; be any nonsingular
matrix. Consider a sequence of trial iterates {s'} and associated trust radii {A'} satisfying

A' =0, predi(s) >0 \f i, ||Dps* || <eoA' Vi, and lim cos©' =1, with ©° defined to be
A=

the angle between D;s' and — D, Tg,. If g, #0 and
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“ck II(D*TDk)'l
Moty g ~° (8.10)
9k (DkTDk)_l

for some ¢ € [0, 1 — 1), then for sufficiently small A" we have

;  eredi(s') S 311
r= pred,(s*) - (3.11)

Proof. Assume without loss of generality that each A is sufficiently small to imply

7, + ' €. Since predi(p°) >0 \ 1, Lemma 3.1 allows us to write

_ i _ pred(s')—ared(s’)

pred(s’)
WL =2P") |8 ]2~ efs*
T - - o
_ngG:_*(au)TBk(sn) (3.12)

— (D¢ T e,)T(Dya’ )+ % (L — NP |6 |12

s — (D Tgy)T (Dys') — %(s*) T By(s)

Using the Cauchy Schwarz inequality, some algebraic manipulations, and the definition

cos (6') = — (D Tgx)T (Dy ) (3.13)
D Ta 11 11Dys {]

we can rewrite (3.12) as

- < D Tex || 11Dse’ || +% (L —2F®) [{s* |]2
- — (D7) T(Dys') = %(s*)T By (s")
(3.14)
1 DT |1+ % (L = 2=) {|s* |12/ 11 Des* 1)
“DI:_Tﬂk ” 005(9")— % (")TBI:(G')/( “Dk_Tgk ” ||Dk8' “)
Now,
: e . s 12
1 ——ie = |im - - =0 3.15
a2 11D 1T~ &m0 [ DT DA (" (8.13)
and
_ ()TB(s) (¢)T By(s*)
1 _— =] - - =0 3.16
&% D 1T~ oo &) DT Du(o " (8.16)

so that by combining (3.14), (3.15), (3.16) and the hypothesis lim cos ©° =1 we obtain
a'—0
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. D7 lex “(D Tp,)!
lim (1-p") < I k-rku = <. (3.17)
A'—0 IIDk Tk ” “gk ”(Dker)—l
Since ¢ < 1 —1n,, we therefore have 1 —p' < 1 — 9, for sufficiently small A°. This establishes our

result since 1 —p' <1—9n,ifandonly if p' >9,. O

An immediate consequence of Theorem 3.2 is that Algorithm (3) will either generate an
infinite sequence of iterates or terminate with Vf(z;)= g, = 0 provided (3.10) holds at every itera-

tion. This can be formally stated as follows.

COROLLARY 3.3. Let f:R" — R satisfy the standard assumptions and let {D;} be a
sequence of nonsingular diagonal matrices. Then Algorithm (3), using any of the step computation
techniques of Section 2, will either produce an infinite sequence of iterates satisfying
J (2:) < f(2x—,) or will terminate at some iterate z, with Vf (z,) =0 provided the relative error in

the gradient approximation satisfies

loe =97 (2) 1 g, 75,

9k (DkTDk)—l

at every iteration.

Proof. Since any acceptable iterate satisfies pred,(p,) > 0 and p, > 0, f(z,) < f(z:,) for
all (existing) iterates, and hence z, €1 for all (existing) z,. Now suppose Algorithm (3) succeeds
in generating zg,z;,...,7;. If gy =0, (3.18) implies that Vf(z,)=0. Otherwise, the algorithm
generates a trial step s° by the methods of Section 2. If this step satisfies p' > 5y, then z;,, exists.
If not, the inner loop of Algorithm (3) will try A**' €(0, v, A%}, A™*2€ (0,7, A'*!), etc. as per step
(a3) of the inner loop. Since 4; < 1, the conditions of Theorem 3.2 are satisfied, and hence 74,

exists. Our result follows by induction. O

Some remarks should be made concerning the possibility of g =0 or V[ (z;) =0 for some
iteration k. If g, =0, then (3.1) requires that g, =V f (z;). This is quite reasonable, in that if the
approximate gradient indicates that z, is a stationary point of [, then the sensible procedure is to

recompute g; with sufficient accuracy to verify or contradict that Vf(z,)=0. We also include no
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theory to affirm or deny the implementability of the algorithm beyond any iteration with
9 =V [ (2:)=0. Methods exist (see, for example, [14]) which are guaranteed to be repelled from
such a stationary point if and only if it is a saddle point, but these methods assume that the
model Hessian B, is the exact Hessian V2f (2x). Since the use of a model with an approximate
gradient and an exact Hessian appears somewhat unlikely, we prefer (for this paper) to say nothing

about the existence of z; ., if g, =V [ (z,)=0.

3.3. Relative error bound as an auxiliary to consistency. In one sense, Theorem 3.2 might
be considered the main result of this paper in that using (3.10) as an auziliary condition to (1.5)
eliminates the major practical difficulty in directly enforcing {1.5). That is, (3.10) assures us that
no further increases in the accuracy of the gradient approximation will be required in the inner
loop. Enforcing (1.5) for the successful iterates is a lesser problem (even though conditions like
(1.11}) are still somewhat unsatisfying). Moreover, (3.10) is a sufficient condition for
likn_l.icgf H g ”(DkTDk)_l = 0 to imply liggxf VS (2) “(DkTDk)_l = 0. Consistency alone is not

sufficient to establish this unless {z;} converges.

In Section 4, we show that consistency can be entirely replaced as a primary assumption by
conditions on the relative error. However, for completeness we conclude this section by showing
how using (3.10) as an auxiliary assumption to consistency allows the results of More to be

strengthened.

We first state the following lemma.

LEMMA 34. Let {D,} be a sequence of nonsingular matrices in R*** satisfying
[ID:T D, || < (09)* and |}(DyTDy)™' || < (0g)* for some constants 0,05 < co. Let {g;} and

{Vf(z)} be sequences in R™** that satisfy either

[lex 1l

<<t k 3.19
Tor T S v (3.19)

or
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lex g, g,

Mol 50 ¥ 5 (3:20)
Then the following are equivalent.
limin |1g: || = 0. (3.21)
liknli::f I gs ll(Db,D‘)_l =0, (3.22)
li:n_’ing Vs (z)ll=0. - (3.23)
li,,nlio{,lf IS () “(DkTDk)_l =0. (3.24)
Furthermore, the following are also equivalent.
Jim g || =0. (3.25)
Jim 119e 115,75, = 0 - (3.29)
Jim |[Vf(z)ll=0. - (3.27)
Jim HY S () “(DkTD")—l =0. (3.28)

Proof. We first notice that the conditions on {D,} imply

1
— Iy <y llp,rp S oslly |l (3.29)

and

1
;3— “y “(DkTD*)_l S “y ” S 62“.'/ II(D‘TDk)—l (330)

for all y € R*. This immediately implies (3.21) < (3.22), (3.23) <= (3.24), (3.25) <= (3.26), and
(3.27) <> (3.28). Now, if |lex I/ lg 1| <¢<1 W k, we have that (3.21) <> (3.23) and

(3.25) == (327). I |le ||(D‘er),l/ 11 9% “(DtTD&)_l <¢<1, then (3.22)<(3.24) and
(3.26) <> (3.28). Linking all of these equivalences immediately establishes the lemma. o

A hybrid of Theorem 3.2 and the global convergence results of Mor€ can now be stated.

THEOREM 3.5. Let f:R" — R satisfy the standard assumptions, let {B,;}, {D,TD;} and

{(Dx T D;)™"} be uniformly bounded, and let {z;} be the set of iterates produced by Algorithm (1)
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using any of the step computation techniques of Section 2. Let the gradient approximations satisfy
the relative error bound (3.18), and assume that if the set of successful iterates is an infinite
sequence, then the consistency condition (1.5) holds. Further assume that 7, =12, = g, = ¢;.

We then have that either

liminf ||, || = liminf IV (a)] =0, (3.31)
k—o00 k—c0

or

o =Vf(n)=0 (3.32)

for some iterate z;.

Proof. We first note from Corollary 3.3 that either Vf (z;) = g = 0 for some iteration z;, or
Algorithm (1) generates an infinite sequence of successful iterates. If {z,} is an infinite sequence,

then by hypothesis {g,} is consistent and Mor€’s [10] result that likm inf || g; “(DtTDk)_l=0 applies

(our assumptions on f, {B:}, {D:}, and the step computation procedure are more than sufficient

to imply the hypotheses used in [10'). Hence Lemma 3.4 implies that either (3.31) or (3.32) holds.

0
4. Global convergence.

4.1. Introduction. Although Theorem 3.5 shows that applying (3.10) as an auxiliary condition
bypasses the largest practical difficulty with directly enforcing consistency, this theory is still less
than satisfying because nothing is specified about how fast ||e; || should be forced to zero as {z,}
converges. If a condition such as |e; || <c¢ ||s || is used, ¢ can be chosen to be any value in
[0,00). In Section 4.2, we establish the same global convergence results as in Theorem 3.5 without

using consistency as a primary hypothesis. We instead use the condition

lles Hip, o,
—”——I'l—'——SS‘<1—'72- (4.1)
9k (DbTDt)_l

Since typical values for 5, usually fall in [0.1, 0.25] and typical values for 5, usually fall in [0.001,

0.1], condition (4.1} is only slightly more restrictive than (3.10).
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In order to establish the strong result klim |1V (z¢) || = 0, Mor¢ [10] returns to the assump-
—00

tion that g, =V f(z:). This stronger assumption is not necessary. We show in Section 4.3 that
bounding the relative error in the gradient approximation to be less than or equal to any constant

¢€[0,1) is sufficient to establish klim [I1¥f(z:) || =0. This strong global convergence result is
—0

often called first order stationary point convergence.

4.2. Replacing the consistency assumption with a relative error bound. We now show

that the results of Theorem 3.5 remain true if the consistency assumption is replaced by (4.1).

THEOREM 4.1. Let f:R" — R satisfy the standard assumptions, let {B;}, {D;7 D} and
{(D+ T D,)™'} be uniformly bounded, and let {z;} be the set of iterates produced by Algorithm (3)
using any of the step computation techniques of Section 2. Let the gradient approximation satisfy

the relative error bound (4.1). We then have that either
liminf |1g, || = liminf |19 ()| = 0 (4.2)
or

o =V/(zn)=0 (4.3)

for some iterate z; .

Proof. The central ideas in this proof are largely due to Powell [12], but we also draw heavily on

the ideas used to prove Theorem 3 .2.

(a)  We first note that since ¢ < 1— 19, < 1—1n,, by Corollary 3.3 we have that either (4.3)
is true or the algorithm generates an infinite sequence of successful iterates satisfying

f (=) < f(2x—) - Hence z;, €01 for all k.

(b)  Suppose {z,} is an infinite sequence but

hﬂg}r “gk ”(DtTDk)_l >e>0. (4'4)

From (1.16), (2.29), and the bounds on {B,} and {D;} we have
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ared,(8,) > % nicslg ”(Dfo)—’ min {Ah 1 9. ”(DTD )—1} (4.5)

for some o,€(0,00), n,€(0,1) and ¢3€(0,1]. Since f is bounded below, (4.5) implies that
A, — 0 and hence AY — 0. Assume without loss of generality that k is sufficiently large to imply

A ”(D[Dk)“ >eand 7, + &' €€1. From (3.14) we have

|10 Tex 11/ DT g [+ (L = 2P 11" 112/(1IDT g 1] 11Das' 1)

-5 < cos© — % (s")7 By(s")/( 11D 79 I 11Dse" 1)

(4.6)

From Theorem 2.2 and Proposition 2.3 we have that A" — 0 = cos©' — 1 and since {B;}

and {(D; T D;)""} are bounded, we can write

He' 112 | S s 112
lim < = lim =0. 4.7
i D T T 1IDsa 1T € b @) D, T Dy (o )P (4.7
and
] TB T ] T [y
lim S’T) He) — <L im (;) T( )___o. (4.8)
ki—oo ||DyTg, || |[Dys' || = € ki—oo [(a')T D, T D,(s%)]*

Furthermore, A" is bounded away from —oo, so combining (4.8), (4.7), and (4.8) gives

[| Dy ey |1
lim (1- ') < lim bl < ¢ < 11, 1.9
i—oo k—oo || DT || (49)

therefore there exists ¢ such that { > = 1—p' <1— 19, and hence p* > 5,. But since no trust

radius reduction is allowed if p* > 15, we have that liminf A’ > 0, which implies lxmmf Ay >0,

f—e00
which is a contradiction. Thus if {z;} is an infinite sequence,
lim inf |l g |1p, 7, =0 (4.10)
The result (4.2) follows from (4.10) and Lemma 3.4. o

4.3. First order stationary point convergence.

4.3.1. Relative error measured in the Euclidean norm. The following theorem establishes
first order stationary point convergence provided the sequence {z;} satisfies the weaker property

lihm inf ||Vf(z:)|]|=0, the uniform  predicted decrease  condition  hnlds,  and
—00
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Ilex 11/ llgs 1l <¢ < 1. This is a very powerful result, as it allows us to obtain the strong result

klim [IV7(ze) || =0 directly from the previously established weak convergence property (4.2)
—00

without using any information concerning the trust radius updating procedure.

THEOREM 4.2. Let f:R" — R satisfy the standard assumptions. Let {z;} be an infinite

sequence of vectors which satisfy the (UPD) condition

. 1
predy(a) > %es||g “(DkTDk)_l min {Ak; ra Ha ”(DkTD‘)—l} (4.11)

and

aredi(8) > ny predi(s:), (4.12)

where A; is a positive number satisfying

Hsk “DtTDk S CQAL' (413)
with CSE(O» 1]7 oy E(0,00), M E(Or l) and CQE [l: 2)

Let the sequence of scaling matrices {D,} satisfy

DT Dy | < (00 (4.14)
and
(D TD )™ || < (03) (4.15)
for 09,0;€(0,00). If
-V
[FA f(Ik)” < (4.16)
[P
for all k with ¢ €[0,1), then
liminf {lg; ||=0 = lim |lg[|=0 = lim [|V/(z)||=0. (4.17)

Proof. Define e=%(1—¢)/(1+¢) and consider any iterate z, with nonzero g,. Since

likminf [1ge || =0, there exists m >m for which ||g5,, || <¢€ llgm || and ||gi || > €]lgm || for
-—00

all k € [m, m]. Now, from (4.11) and (4.12)
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Fam)—f () = 33 aredy(ss) > 35 mupreds(a)

kwm k=mm

(4.18)
> ,,%,%m €3 ”gk “(DTD )—l min {Akr o, ”gk ”(Derk)_l}'
Using the facts that ||g, ”(Drp) -12 ||ﬂk I, A2 >— 1EN ”(Drpk)_ “81: I,
Hge || > € |lgm || for all k € [m, m], (4.18) can be transformed into
Ha ll € llgm Il
- - )2 —_ .
f(zm) j(zm+l) 7]163 Ilgm II kgm { 03¢s ’ 0,0, (419)
This can be divided into two cases.
) If |lgnm ||> Ha,, || for at least one k € [m, m}], we have
€ o llom I
J(zm) = [ (2541) 2 mics(— 2)20—- (4.20)
1
(if)  Otherwise,
e llom Il
f(an) =1z m+1)>%'hcs p E Il 1] (4.21)
3C2 ko=m

m
Now, in order to merge case (i) and case (ii), we need to establish a lower bound on Y] ||s ||.
k=m

From the triangle inequality we can write |lgm || < |l 9570 — 9m Il + |lg741 1] and hence
Hom H< 9741 — 9m || + € |lgm ||. By rearranging terms, again applying the triangle inequality,
invoking the Lipschitz continuity of Vf, and substituting in €; = g, — Vf (2, ), we can obtain

(1 —€) “gm ” < “gﬁ.ﬂ —~ Im ”

< NV (2m) =V (za) Il + g —em |
< L ” Tr41— Im ||+ ”CE,H—CM “ (422)

<L E Hae 1+ leman 1+ Hem I -

k =m

Substituting (4.22) into (4.21) yields
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Mmes 1
( ) f( m+l) 0’203(:2 Te ”gm |”(1_‘)”gm ”" ”c,'i.ﬂ ”_ “‘m ”]
1€ 3€ e 12|01 —q- [lem |1 _ ”‘EH” ”954-1 I
2% el o Hom I Nomar I Hom |l
mrcae 23)
1€3
> % —_— 2l—€—c—
_— 02036214 ”ym ” [ € g fe]
7€ 3€ 2
— %(1- .
>4 g %1 - )
Hence for either case (i) or case (ii) we have that
f(zm) = S (251) 2 € Hlgm I? (4.24)
- .. - € . € 1—¢
where € is the positive constant € = % 5, ¢3 — min y ———— .
gy 090y 2L03C2

Now, by hypothesis, f is nonincreasing and bounded below, so {f(z;)} must converge to some

limit, say f *. Thus, for any m, either g,, =0 or

Hom 1| < (f(2m) = f (25,1)) /€
<(f(zm)=17)/7.

(4.25)
Therefore g — 0 and by Lemma 3.4, Vf(z,)— 0. o

Condition (4.16) is a fairly natural condition, but it is slightly different from the condition
used previously because it measures the relative error in the Euclidean norm while (1.10) measures
1

it in the elliptical norm induced by (D,,TD,, )~'. In the next section we introduce a variation of

Theorem 4.2 which uses (1.10).

4.3.2. Relative error measured in the norm induced by the scaling matrices. The fol-
lowing theorem establishes first order stationary point convergence under conditions similar to
those of Theorem 4.2. There are, however, two differences. First, we assume

[ ex H(D D )—l/ Hge ”(Der)—lﬁs' < 1 to be consistent with the theory in Section 4.2. Second, we
[ 3 k

impose an extra condition on the sequence of scaling matrices.
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THEOREM 4.3. Let the hypotheses of Theorem 4.2 be satisfied, with the exception that

(4.16) is replaced by

”gk - Vf (zk) “(DkTDk)_l

”gk “(D[Dt)-l

< (4.26)

for all k with ¢ €0, 1). Let us further assume that there exists a constant L €(0, 00) such that

DT VS (2a) = DTVf (2) I < L & || (4.27)
for all k. We then have that

lim inf =0= li = lim ||V =0.
iminf |lg [| = 0= lim [l |l =0= lim |[V/(z)Il (4.28)

The proof of Theorem 4.3 is quite similar to that of Theorem 4.2, so we shall defer it until the

Appendix.

Condition (4.27) is quite interesting. If a fixed scaling matrix D is used rather than an adap-
tive scaling technique, (4.27) is automatically implied by the Lipschitz condition on V. Further-
more, simply assuming that {D,7 D,} and {(DID;)™'} are bounded is definitely not sufficient to
imply (4.27). For example, if Vf(2n)=Vf(@), ||IDiss™ TV (2es1) - DSV (@) || =
H(Dwsr™™ = D)V () 1.

Adaptive scaling is poorly understood at present. Most implementations that make use of it
generate {D,} by heuristic methods rather than procedures with a firm theoretical basis. Given

this lack of understanding, theoretical conditions such as (4.27) are important because they suggest

guidelines to be used in designing methods for generating scaling matrices {D; }.

An extension of our theory which might seem desirable would be a result analogous to
Theorem 4.2 but with the relative error expressed in the Euclidean norm. Such a theorem would

increase the symmetry between the results of Sections 4.2 and 4.3. Unfortunately, this conjecture

is not true. Say, for example, Vf (z,)=(—%,1)7, g =(%,1)¥, n,=0.1, and D, = 1(/)4 (l)]‘ Now,

e. =(1,0) and |[ex |I/llgx || =V4/5 < .9, 50 that our condition |le. ||/ [lge HH<s <115 is
satisfied. However, the preconditioned steepest descent direction, — (DkTD,, )'] g ,is —(8,1)T. This

is not a descent direction for f since (~Vf(z;))7(—8,—1)7 < 0. Therefore, since &' tends in
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direction toward —(DJIDy)g,™' as A'—0, a sufficiently small A° will imply

aredy(s')/predi(s') < 0 \f A* < AO,
5. Conclusion.

5.1. Summary of results. The global convergence result likm inf |}g: || y-1=0 has previ-
—00 [

(ofp
ously been shown for trust region algorithms that use inexact gradient values provided these
approximations are consistent. We demonstrate, however, that for implementations that do not
update g, on unsuccessful iterations, the algorithm may fail at a point z; with g, # 0. This failure

cannot occur if

”gk - Vf (Ib) ”(DkTDk)_l

<g¢ 5.1
T Mooy &)

and ¢€[0,1—7n;). Furthermore, if (5.1) holds with ¢€[0,1—1n,), the result

likm inf |} g || =likm inf ||Vf(z) ]| =0 can be established without using consistency as a primary
—00 —00

7

assumption'” : consistency is instead a consequence of our theory. Finally, (5.1) also allows us to

obtain the strong global convergence result klim 1V f(2) || =0 provided (4.27) holds.
—00

Since many of the procedures used for generating gradient approximations simultaneously
provide an error estimate, our results provide a practical criteria for deciding whether a given

approximation is adequate.

5.2. Final remarks. Several possibilities suggest themselves for future study. One is to estab-
lish our results using alternative assumptions. Rather than taking ||e; ||/ g || <¢, we might

try assumptions like

gV (2)
Hoe I VS (ze) Il =

(5.2)

or

7This result uses mild assumptions on f and assumes that {B,}, {D,TD,)} and {(D;JD,)™} are uniformly bounded.
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Vs ()] 1
L PR (5:3)

The two examples in Section 3.1 show that neither (5.2) nor (5.3) taken alone is sufficient to ‘mply
implementability, but some combination of similar assumptions might work. The existence (and

utility) of such alternative assumptions is an open question.

Another topic for future research is to examine the local convergence rates of these methods.

Steihaug [16] establishes g-superlinear convergence for a class of trust region algorithms assuming

HBia + VS (z:) | =0, or equivalently lim [[(Bese + g¢)— e 1]
“Vf(l'k)” ’ k —+oc0 “ﬂl:—‘k “

= 0. The structural similarity between Steihaug’s analysis and that of this paper suggests that

(among other things) that klim
—00

. . P e |l
g-superlinear convergence can be obtained if lim ————

=0. This is probably an unrealistic
t—oo |l gx ||

assumption since gradient approximations are generally used only when exact (or almost exact)
values are extremely expensive computationally, so an important question is the existence of less

restrictive assumptions which imply fast local convergence.

8. Appendix.

6.1. Proof of Theorem 2.2. First notice that case (i) can be treated as a special instance of
case (ii) by defining g7 =g, and é; =B, \£ k > k. To prove case (ii), we recall that by Theorem

2.1, there exists a sequence of nonnegative numbers {u‘} such that

(B +p D& = -4, (6.1)

and

He' Il < et (6.2)

with By + ' [ positive semidefinite. Applying the Cauchy Schwarz inequality to (6.1) gives

W& 1 > Hlga 1/ 11Be + T 11 (6.3)

Suppose there exists € > 0 such that ||g, || > ¢ for all k sufficiently large. Equation (6.3) and the

hypothesis that {Bk} is bounded establishes that
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6] = 0= p' — cc. (6.4)
Now,
) — (s
cosO' = ﬂ(—)fk (6.5)
e 1 Hae ll

so that by substituting (ék +u'I) 3" for — § in (6.5) and expanding the resulting terms we get

(5)7(By +4°1) 8*

O = TG +# DT
+ ;‘T(s‘)fé.,(s‘)/ IEaTE (©9)
4GB NG I+ (R BT B N nﬂr

Hence by (6.2), (6.4), (6.6) and the hypotheses li:nsup [|By || < o and lim A° = —0, we have
—_—00 1=+ 00

lim cos(®')=1. O

k4 —00

6.2. Proof of Theorem 4.3. The proof of this theorem is quite similar to that of Theorem 4.2.

Define

€= %(1-g)/(1+9) (6.7)

and consider any iterate z,, with nonzero g¢,, .
Since likm inf ||g; || =0, by Lemma 3.4 we have that Iikm inf ||De T g, || =0, and thus there
— 00 -0

exists m >m for which ||Dyy™ T 9700 H <€ 11D Tgm || and [|Dy"T g || > € || D Tgm || for all

k €|m,m]. Using equation (4.18) and the facts that A,,Zci |8 ”D,TD,Z 01 & || and
2 2

D™ gi || > 11D "9 || ¥ k € [m, ], we can write

’ o gm
(om)= £ 55 2 L s DT 1| S m {"‘:' 12z - | } %)

k=m

We then use the triangle inequality to show

UDw Tgm || € UD7Tgm — D Tom Il + D5 05 1l

(6.9)
< ”Dm gm_Dm+19m+1”+€ “Dm Im “
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so that
(1= UDm gm Il < IDmTgm — Dhi9m 41 I - (6.10)

Rearranging terms, defining ¢, = g, — Vf (), and again applying the triangle inequality allows us

to write

(1_6) ”Dw-»-Tgm H S ”Dm_TVf(zm)’*'Dv;Tem m+1vf( m+1) Dm+lcm+l “
S ”D_va(zm) D;Il ZE-H)“*‘ ”Dm Cm ||+ ||Dﬁ+lci+1 ”
= || E TV/ (ze)— Dk+l_lvf(1'k+l))“+ HDnm Cm [+ “Dm+l Cam+l [l
ks=m
L (6.11)
3 UDTTVS (2) = Dad 'V (zia) L+ 11D Tem |+ Dz eman |

k=m

a
<L Y Hall+ 1107 Tem 11+ 11D 650 1] -
k =m

A

Using (6.7), (6.11), and the inequality ||Dz 7 9=, Il <€ ||D7Tg, || gives

3 o 112 27 (1= 11D 0w 1l = [1D5Tem 11 = UDFT e 11 ]
k=m
E_T ”D_Tg II [(1 - ”Dm_Tcm “ “Dm-H € +1 ” }
- mo HDwTom I~ 11DaTam Il
N IID"Tg (l1—e—s— ”Dm-H Cm+l “ ”Dm+lgm+l”
- o II 1gm+1” ”Dm Im ” (612)

L

> L |10 Ton 1l [1—s— €14+ 9)]
- 1 -
> ID77m Il L - /L .

Substituting this into (6.8) yields

S (2m) = (254) 2 € 1ID5Tgm |I? (6.13)
where
- 1 € 1—¢
€= —1,t3€ min > 0.
5 Mts { 2”362L} (6.14)

By hypothesis, f is nonincreasing and bounded below so that f(z;)— f * for some f *. Thus for
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any m, either g,, =0, or

“Dm-Tﬂm ”2 < (zm)_f(zﬁ'+l))/?

6.15
<)1) /7. (619

Therefore, klim 1Dy Tg |l =0, and by Lemma 34, klim llgr 1=0  and
—00 —0

Jim |[Vf(z)]ll=0. O
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